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Separating the surface segregation enthalpy into three elementary contributions �cohesive, alloy, and size�
has been proposed by many authors but rarely tested quantitatively. A three element separation rule has been
derived from a tight-binding Hamiltonian 15 years ago. It has yielded very satisfying results for various
environments �close-packed surfaces, vicinal surfaces, grain boundaries, and clusters� for the Cu-Ag system
and for many other alloys. However recently this rule has stumbled over the Co-Pt system. We therefore
develop an approach—the coupled three effects model �CTEM�—based on a systematic study of the properties
of permutation enthalpies—both in the bulk and in the surface—as a function of the value of the mixed
interaction involved in the N-body interatomic potentials derived from the second moment approximation of
the tight-binding scheme. We show that both the disagreement previously observed for Co-Pt and the agree-
ment mentioned above for Cu-Ag can be explained by the variation of the alloy effective pair interactions
�EPIs� in the surface and by the existence of coupling coefficients between the three effects. We also show that
the surface EPIs are proportional to the bulk EPIs when the difference of atomic radii of the components can
be neglected, while they differ from an additive constant in the presence of a large size effect. We suggest
general criteria to determine alloys where the present improvements are expected to be significant.
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I. INTRODUCTION

Since Gibbs’1 famous works on the thermodynamical de-
scription of surfaces, many experimental and theoretical
studies have focused on interfacial segregation �surface and
grain boundary�.2–5 Segregation has indeed a strong influence
on many mechanical �intergranular fracture� or chemical
properties �modification of the catalytic properties with the
superficial composition�. Very recent papers also emphasized
the role of segregation in the chemical composition of the
different superficial sites of nanoclusters.6–9

As the nature of the segregating element in an alloy
AcB1−c can depend on the bulk concentration c, statistical
physics tools are required to express the surface concentra-
tion as a function of c.4,5,10 Nevertheless, in the infinitely
dilute limits, the nature of the segregating element can be
determined by the segregation enthalpy �Hseg, which is de-
fined as the energy balance of the exchange of a solute atom
in the bulk with a solvent atom in the surface. Ab initio
computations or calculations based on N-body interatomic
potentials that are derived from the electronic structure lead
to realistic values of �Hseg without allowing one to specify
the physical parameters that govern the segregation.11

Various approaches have been proposed to interpret the
segregation enthalpy. Rigid-lattice approaches with pair in-
teractions emphasize the role of the difference of surface
energies and the mixing energy.10 A similar conclusion is
obtained from a tight-binding Hamiltonian on a rigid lattice

treated by the generalized perturbation method leading to the
TBIM �tight-binding Ising model�.12,13 Indeed, the two ener-
getic parameters that occur in this approach are the surface
local field equivalent to the difference of surface energies
and the effective pair interactions �EPIs� that govern the mix-
ing energy.

Wynblatt and Ku14,15 proposed to add an elastic term to
these energetic parameters, in order to account for the differ-
ence of size between the components. This generalizes the
McLean16 model developed for grain boundaries. If this
three effects model renders the nature of the segregating el-
ement reasonably well,15 the authors did not validate it quan-
titatively by comparing the segregation energies determined
from interatomic potentials to those obtained by this three
effects rule via the same potentials.

More recently, Berthier et al.17 developed a mixed ap-
proach �denoted BLT in the following� that generalizes the
results of the TBIM by incorporating a size effect when the
atomic radii of the components differ. Unlike Wynblatt and
Ku,18 this size effect is not evaluated within the linear elas-
ticity framework but via numerical simulations using N-body
interatomic potentials derived from the electronic structure
so that the dissymmetry between tension and compression
can in particular be accounted for. The reconstitution of
�Hseg via this three effects rule has been compared with its
direct computation via N-body interatomic potentials based
on the second moment approximation of the tight-binding
scheme, mostly for the Cu-Ag system. For surfaces of differ-
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ent orientations,17,19–21 grain boundaries,17,22,23 and the dif-
ferent superficial sites of clusters,9 it leads to a quantitative
agreement since the maximal observed deviation does not
exceed 50 meV for quantities that can reach 700 meV. A
similar agreement has also been obtained for a series of
transition-metal alloys with low mixing energies.24,25 How-
ever, this rule recently revealed deviations of about 200 meV
for quantities that are only a few tenths of millielectron volt,
while studying the �100� and �111� surfaces of the Co-Pt
system. Recall that this system is characterized by a lattice
mismatch that is similar to the Cu-Ag system but also by a
strong tendency to order �with a critical order-disorder tem-
perature around 1100 K for the L10 phase26�.

This paper aims at improving the separation rule by re-
vealing the origin of this disagreement and by clarifying the
couplings between the different effects. Moreover, we extend
this rule to permutation enthalpies, �Hperm

p , defined as the
energetic balance related to the switch of chemical nature
from a solvent atom into a solute atom on a site p. The
segregation enthalpy then reduces to the difference of per-
mutation enthalpies between the surface and the bulk:
�Hseg=�Hperm

surf −�Hperm
bulk . Testing the decomposition on the

permutation enthalpies then turns out to be more drastic than
testing it on the segregation enthalpies since a systematic
deviation on the permutation enthalpies can be discarded by
the subtraction in the segregation enthalpy.

The paper is organized as follows: In Sec. II, we first
present the different models to be used and recall how to
compute, via the mixed approach, the above-mentioned three
effects �surface energies or cohesion, alloy, and size effects�
from the interatomic potentials used for the direct computa-
tion of segregation and permutation enthalpies. Then we
show how to introduce the coupling between these effects by
varying the mixed interaction A-B while keeping constant
the potentials of the pure metals A and B. In Sec. III, we
detail the couplings between the alloy effect and each of the
other two effects �cohesion and size effects�, both in the bulk
and in the surface. This allows us to introduce an efficient
way to compute the cohesion and size effects. The resulting
decomposition, called the coupled three effects model
�CTEM� and denoted as DCTEM in the following, is then vali-
dated in Sec. IV on the Co-Pt and Cu-Ag systems. From this
satisfactory agreement we clarify the validity domain of the
previous BLT separation rule, denoted as DBLT in the follow-
ing. This allows us to explain the disagreement observed for
the Co-Pt system and the success encountered for all the
cases that were previously studied with the DBLT approach.
Finally, in Sec. V, we draw the prospects offered by this
framework toward a better understanding of the segregation
driving forces for systems with both strong size and alloy
effects.

II. MODELS

A. N-body interatomic potentials

We use N-body interatomic potentials derived from the
second moment approximation �SMA� of the tight-binding
scheme27,28 to compute the permutation enthalpies. In this
approach, the energy on a site n is the sum of an attractive

band term that takes into account the width of the local den-
sity of electronic states,27

En
binding = −��

m�n

�ij
2 exp�− 2qij� rnm

rij
0

− 1�� , �1�

and a repulsive term of the Born-Mayer type,27

En
rep = �

m�n

Aij exp�− pij� rnm

rij
0 − 1�� . �2�

The indexes i and j specify the chemical nature of the atoms
on sites n and m, rii

0 �respectively rjj
0 � corresponds to the

equilibrium distance between first neighbors in the pure

metal i �respectively j�, rij
0 =

rii
0+rjj

0

2 , and rnm is the distance
between the sites n and m. �ij is the effective jump integral
between atoms i and j.

To study a specific system, the parameters ��ij, qij, Aij, and
pij� are obtained by fitting on several bulk physical quantities
�lattice parameters, cohesive energies, elastic constants, and
dissolution energies for the alloy parameters�;23 otherwise,
canonical parameters can be used.27 Note that fitting the
SMA parameters to experimental cohesive energies leads to
an underestimation of the surface energies since it is well
known that such potentials are not satisfactorily transferable
from isolated atoms to bulk via surface.29 Nevertheless, these
deviations do not prevent us to describe correctly the relax-
ations and/or reconstruction of the low index surfaces.30 We
ensure the continuity in the computation of energies and
forces by shrinking to zero the attractive and repulsive inter-
actions via a fifth-order polynomial between the distances rij

c

and rij
c�, the metals considered in the present study being all

in the fcc structure. For i= j, these distances stand, respec-
tively, for the distances between second and fourth neighbors
of the pure metal i. For i� j, we ascribe rij

c to the distance
between second neighbors of the element with the largest

atomic radius and rij
c� to the distance between the fourth

neighbors of the element with the smallest atomic radius.
The resulting parameter values for the Cu-Ag and the Co-Pt
systems are gathered in Table I. To relax the atomic posi-

TABLE I. Parameters of the interatomic potentials used for the
Cu-Ag and Co-Pt systems. The quantities used for the fit 	atomic
radii rij

0 �Ref. 32�, cohesion energies Ecoh �Ref. 32�, and bulk moduli
K �Ref. 33�
 are also indicated.

Aij

�eV�
pij �ij

�eV�
qij rij

0

�Å�
Ecoh

�eV�a
K

�GPa�

Ag-Ag 0.125 10.35 1.267 3.42 2.89 −2.95 108

Cu-Cu 0.108 10.38 1.343 2.63 2.56 −3.50 142

Ag-Cu 0.119 10.36 1.300 3.03 2.725

Co-Co 0.189 8.80 1.907 2.96 2.50 −4.45 204

Pt-Pt 0.242 11.14 2.506 3.68 2.76 −5.86 296

Co-Pt 0.245 9.97 2.386 3.32 2.63

aNote however the limitation of fitting interatomic potentials on
Ecoh as expressed in Ref. 29.
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tions, we use a quenched molecular-dynamics algorithm that
minimizes the potential energy at 0 K.31

B. Three effects rule (BLT model)

First let us consider a very simple model of nearest-
neighbors pair interactions on a rigid lattice. The permutation
enthalpy of an atom of the matrix B into a solute atom A for
a site p �p=bulk or surface� in the limit of the infinitely
dilute alloy B�A� then writes: �Hperm

p =Zp�VAB−VBB�, where
Zp is the coordination number of the site p. This expression
can be rewritten as

�Hperm
p = �Hperm,coh

p + �Hperm,alloy
p , �3�

which brings out one term to be related to the difference of
interaction energies in the pure metals A and B: �Hperm,coh

p

=Zp�=Zp�VAA−VBB� /2 �cohesive effect� and a second
one to be linked to the EPI: �Hperm,alloy

p =−ZpV, with
V= �VAA+VBB−2VAB� /2 �alloy effect�. However, this intro-
duces a two-solute term VAA in an artificial way since �Hperm

p

only involves one solute atom in the infinitely dilute limit.
Such a pairwise description of the cohesive energy of

transition metals is quite unrealistic; it was then proposed to
derive a better grounded model from the electronic structure
�tight-binding scheme� suited to account for the energetics of
A-B permutations, still on a rigid lattice. This led to the ef-
fective Ising-like TBIM model,12,13 which introduces the fol-
lowing changes with respect to Eq. �3�: �i� The expression of
the cohesion effect �Hperm,coh

p is generalized to the case of
nonadditive interactions derived from N-body potentials.
Thus the term Zp� issued from pair interactions between
nearest neighbors on a rigid lattice is replaced by

�Hperm,coh
p = HA

p − HB
p , �4�

where Hi
p is the energy of the site p in the pure metal i.4,17,23

�ii� The alloy term �Hperm,alloy
p =−ZpV is generalized by tak-

ing into account the EPIs between kth neighbors Vk �Ref. 34�
so that one writes

�Hperm,alloy
p = − �

k

Zk
pVk

p, �5�

where Zk
p is the coordination number for the kth neighbors.

The EPIs Vk
p are evaluated via the N-body interatomic poten-

tial by computing the enthalpy difference �Hk between an
initial configuration where two solute atoms are not interact-
ing and a final configuration where the solute atoms are in
the position of kth neighbors: Vk

p=�Hk /2.4,17,23 The enthalp-
ies of the initial and final configurations are obtained after
optimizing the atomic positions. This is the core of this dual
approach that introduces the role of atomic relaxations in a
rigid-lattice framework. Moreover, one can easily integrate
in Eq. �5� the variation of the EPIs at the surface that is
predicted both by computations based on a detailed descrip-
tion of the electronic structure11,35 and by those using the
N-body potentials as described above.4,36

Equation �3� being obtained in a rigid-lattice framework,
Wynblatt and Ku14,15 proposed to add a contribution due to
the difference of size between the components, �Hperm,size

p ,

by estimating it in the bulk via the linear elasticity
formalism37 and by assuming that it vanishes in the surface.
This contribution was later improved by computing it via
numerical simulation by selecting a set of parameters for the
N-body potentials that are identical for the matrix �B� and the
solute �B��, except for the atomic radii of the two compo-
nents for which the equilibrium values, rBB

0 and rB�B�
0 =rAA

0 ,
are considered.18,38 The corresponding size contribution is
then written as

�Hperm,size
p = Htot

p 	B�B��
 − Htot�B� , �6�

where Htot
p 	B�B��
 is the total energy of the system with a B�

impurity at site p and Htot�B� is the total energy of the pure B
system.

The permutation enthalpy at the site p can then be written
as the sum of three terms:

�Hperm
p = �Hperm,coh

p + �Hperm,alloy
p + �Hperm,size

p , �7�

in which the three contributions are given, respectively, by
Eqs. �4�–�6�.

This decomposition turned out to be remarkably pertinent
for the different environments of the Cu-Ag system �close-
packed surfaces,17,19,20 vicinal surfaces,21 grain
boundaries,17,22,23 and clusters of different structures9�. Since
this procedure is inductive, a deeper analysis is required to
control the validity domain of the decomposition. Among the
main points to be analyzed let us cite the possible coupling
between size and alloy effects. Indeed, for the decomposition
to be valid, the alloy effect—due to possible nonzero EPIs
for the system matrix virtual solute, i.e., B-B�—should not
occur while introducing a virtual solute atom for the compu-
tation of the size effect. If this induced alloy effect turns out
to be negligible for Cu-Ag,9,22,23 this may not be the case for
other systems. Strong deviations between the direct compu-
tation �Hperm

p and the proposed decomposition given by Eq.
�7� can also come from Eq. �3�, where a solute-solute inter-
action VAA is introduced both in the cohesion effect
	Zp�=Zp�VAA−VBB� /2
 and in the alloy effect
	−ZpV=−Zp�VAA+VBB−2VAB� /2
, although it does not occur
in the permutation enthalpy of an isolated A solute atom
	Zp�VAB−VBB�
. This results in a possible source of discrep-
ancy between the one-solute computation employed while
evaluating directly �Hperm

p , the two-solute computations to
evaluate V in Eq. �5� or the evaluation of the cohesion energy
in the pure metal A in Eq. �4�. This is also true for atomic
relaxations in the presence of a size effect since the interac-
tion of displacement fields of two solute atoms that occurs in
the computation of V does not play any role in the direct
computation with only one solute atom.

C. How to couple the three effects

The problems encountered using the BLT decomposition
of the permutation energy given by Eq. �7� are essentially
attributed to the oversimplified assumption of decoupling the
alloy contribution 	Eq. �5�
 from the cohesion 	Eq. �4�
 and
size 	Eq. �6�
 ones. To solve them, we then need to go be-
yond this assumption by adopting a procedure that allows us
to properly account for the coupling between these three ef-
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fects, which comes from the N-body character of the inter-
atomic potential on one hand and atomic relaxations on the
other hand.

To this aim, we need to define a parameter that accounts
for the alloying tendency of the system under study and that
can be varied on a sufficiently large range to allow us to
explore systems that tend to order or phase separate while
relying on the same potentials of pure metals A and B. This is
achieved here by choosing �AB

� =�AB /��AA�BB, with �AB being
the parameter of the mixed interaction in Eq. �1�. Indeed,
varying �AB

� for a given couple of A and B pure metals—
defined by their cohesion and size mismatch characteristics,
i.e., by the numerical values of �� /�= ��AA−�BB� /�BB �cohe-
sion effect� and �r /r= �rAA

0 −rBB
0 � /rBB

0 �size effect�—will al-
low the AB system to present a tendency either to order
��AB

� �1� or to phase separate ��AB
� �1�.

The procedure that we adopt is then the following: We
still decompose the permutation energy into three contribu-
tions, following Eq. �7�:

�Hperm
p ��AB

� � = �Hperm,coh
p + �Hperm,alloy

p ��AB
� � + �Hperm,size

p ,

�8�

in which only the alloying term depends on �AB
� . This alloy-

ing term is modified in two manners with respect to the
previous one 	Eq. �5�
: �i� we separate the short-range EPIs
Vk

p��AB
� � and �k�k0�—which strongly vary with �AB

� and
therefore indeed account for the alloying effect—from the
long range ones, �k�k0�, which do not vary with �AB

�

	Vk
p��AB

� ��Vk
p
 and therefore only depend on cohesion and

size effects.39 For the alloying term, we restrict the summa-
tion �kZk

pVk
p to the short-range �AB

� -dependent EPIs �k�k0�.
�ii� To take into account a possible coupling between the
three effects, we group all the dependencies of �Hperm

p ��AB
� �

on the alloying parameter �AB
� into the alloying term. This

introduces a coupling coefficient 	p��AB
� � defined in the fol-

lowing manner:

�Hperm,alloy
p ��AB

� � = − 	1 + 	p��AB
� �
 �

k�k0

Zk
pVk

p��AB
� � . �9�

In absence of coupling between the three effects,
	p��AB

� �=0 and Eq. �5� is recovered. We will see in the fol-
lowing that a major result of this approach is that 	p��AB

� �
does not depend on �AB

� . It means that the coupling coeffi-
cient is a property that only depends on the characteristics of
the pure metals.

Note that such a description allows us to provide a rigor-
ous definition of the pure cohesion/size contributions from
the value of the permutation enthalpy that corresponds to a
nil alloy effect. More precisely,

�Hperm,coh
p + �Hperm,size

p = �Hperm
p ��AB,0

�,p � , �10�

where �AB,0
�,p is defined by

�
k�k0

Zk
pVk

p��AB,0
�,p � = 0. �11�

The key point of such a procedure is then to determine
both the cut-off k0 for alloying EPIs and their coupling co-
efficient with cohesion and size effects 	p��AB

� �, and for a

system AB defined by its cohesion characteristics �� /� and
its size mismatch �r /r. To this aim, both the EPIs Vk

p��AB
� �

and the permutation enthalpies �Hperm
p ��AB

� � will be com-
puted as a function of �AB

� via the methods described in the
previous section.

To separate univocally the couplings between the different
effects �i.e., cohesion, size, and alloying� from the influence
of broken bonds in the surface, we will first apply our pro-
cedure on the bulk �p=b�. Moreover, in order to identify the
respective role of the coupling between cohesion and alloy
effects on one hand and size and alloy effects on the other
hand, we will first detail separately these couplings by per-
forming the calculations for virtual AB systems, whose A and
B components differ either by their cohesive energy or by
their size mismatch. The procedure will then be applied for
the �100� surface �p=s�. This will allow us to determine the
coupling coefficients 	coh/alloy

p and 	size/alloy
p in both �bulk, sur-

face� cases in order to revisit the three effects rule for surface
segregation. Finally, the procedure will be generalized to
couplings between the three effects and applied to the Co-Pt
and Cu-Ag systems. The keypoint of all this study is the
systematic variation of �AB that allows one to define the per-
tinent coupling coefficients and their variations as a function
of the difference in cohesive energies and the lattice mis-
match.

III. DIFFERENT COUPLINGS

In this section, we will first study separately the coupling
between alloying and cohesion effects on the one hand and
between alloying and size effects on the other hand, before
generalizing to the peculiar cases of Co-Pt and Cu-Ag, for
which the three effects simultaneously occur. In all cases, the
calculations will be performed in an fcc bulk then at the
�100� surface. To define systems in which only cohesion or
size effect occurs, we proceed as follows: �i� No size effect:
the two metals A and B are represented by interatomic po-
tentials leading to the same equilibrium parameter. In prac-
tice, we fix rAA

0 =rBB
0 and we use the canonical values:

pAA= pAB= pBB=9 and qAA=qAB=qBB=3.27 Moreover, we
consider values of �� /�= ��AA−�BB� /�BB that lay between
−33% and +33% in order to explore the characteristic range
of cohesion energies of transition metals. More precisely we
chose �BB=1.8 eV for the solvent—corresponding to a co-
hesion energy that equals −4.2 eV—while for the solute �AA
can vary between �AA=1.2 eV �cohesion energy equals
−2.8 eV� and �AA=2.4 eV �cohesion energy of −5.6 eV�.
The parameters Aii are obtained via the equilibrium
equation28 and AAB=�AAAABB.25 �ii� No cohesion effect: the
two metals A and B are represented by the same interatomic
potentials, apart from the atomic radii. We ascribe for the
solute A: �r /r= �rAA

0 −rBB
0 � /rBB

0 = 
5%, 
10%, and 
15%.
The parameters that are common to both pure metals A and B
correspond to the copper characteristics �Table I�—from
which this study has been initiated—whereas AAB is taken
equal to �AAAABB.25

Then, we compute the EPIs and the permutation enthalp-
ies as a function of �AB

� for the above set of values of either
�� /� in the former case and of �r /r in the latter case.
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A. EPIs

We compute first the EPIs via the method described in the
previous section; we bring closer �in k-neighbor positions�
two solute atoms that were initially not interacting, and we
compute the energy balance after relaxing the atomic posi-
tions. Three types of EPIs are determined depending on that
the two impurities both occupying either the bulk or surface
sites, the first one a surface site and the other one a subsur-
face site, leading, respectively, to Vk

bulk, Vk,�
surf, and Vk,�

surf. Let us
discuss our main results in the case of the nearest-neighbor
interaction �k=1�, which is by far the predominant one for
the fcc structure. The variations of V1 as a function of �AB

� are
displayed in absence of size effects �Fig. 1� and in absence of
cohesion effect �Fig. 2�. Three situations are exhibited in
each case: �i� no size effect: �� /�=−33% �solute less cohe-
sive than the matrix�, 0%, and +33% �solute more cohesive
than the matrix�. �ii� no cohesion effect: �r /r=−10% �solute
smaller than the matrix�, 0%, and +10% �solute bigger than
the matrix�.

We first analyze the bulk case. In both situations, the
variations of V1 with �AB

� are nearly linear despite the N-body

character of the interatomic potentials and despite the relax-
ations that strongly decrease the value of V1 for the size
effect case �they diminish the tendency to order or increase
the tendency to phase separate36�.

In the absence of size effect, for a given value of �AB
� , V1

tends to increase when the solute is more cohesive than the
matrix and to decrease in the reverse case �apart from the
shift of the zero value of V1 that deviates slightly from the
value �AB

� =1 for �� /��0� �Fig. 1�. In that case, the influ-
ence of the relaxations is rather negligible and the interac-
tions beyond V2 are almost equal to zero although V2 is al-
ready very small compared to V1 �V2 /V1�0.1�.

In the absence of cohesion effect, for a given value of
�r /r, the difference in the atomic radii increases V1 when
the solute is larger than the matrix and decreases in the re-
verse case �apart from the zero value of V1 that slightly de-
viates from �AB

� =1 for �r /r�0, as in the case �� /��0�
�Fig. 2�.

We find that only V1 and V2 �which remains always
smaller than V1, except near the zero value of V1� depend
significantly on �AB

� . This indicates that the sum of the EPIs
that occurs in Eq. �9� to determine �Hperm,alloy

bulk can be re-
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stricted to k�k0=2. For k�3, the very weak remaining EPIs
do not depend on the alloy mixed interactions but only on
�� /� or �r /r.

We now comment on our results in the surface case.
Tight-binding computations with a detailed description of the
electronic density of states but without atomic relaxations
emphasized that the alloy EPIs were strengthened in the sur-
face. This holds true both for the interactions in the surface
plane and for those between sites in the surface plane and
sites in the underlying plane.12,13 This tight-binding result
has been confirmed later by ab initio computations.11,35

In absence of both cohesion and size effects
��� /�=�r /r=0�, Figs. 1 and 2 show that V1,�

surf�V1,�
surf

�1.2V1
bulk, in good agreement with the computations men-

tioned above. When only the cohesive energies differ
��r /r=0�, the multiplicative factor between V1,�

surf�V1,�
surf and

V1
bulk is maintained, but it slightly increases for �� /��0

	Fig. 1�c�
 and diminishes in the reverse case 	Fig. 1�a�
.
However, a difference in the atomic radii of the components
radically modifies this behavior. Indeed, for �r /r= +10%,
the multiplicative factor between V1

surf and V1
bulk is replaced

by additive factors. More precisely, V1,�
surf−V1

bulk�8 meV and
V1,�

surf −V1
bulk�−14 meV 	Fig. 2�c�
. For �r /r=−10%, Fig.

2�a� displays an intermediate behavior resulting simulta-
neously from a multiplicative and an additive factor �positive
for V1,�

surf and negative for V1,�
surf�, the latter prevailing when

�r /r increases.

B. Cohesion and size contributions

The permutation enthalpies have also been calculated in
both cases �no size effect and no cohesion effect�, for the
same values of �� /� and �r /r. The main result is that they
vary linearly with �AB

� . From the EPIs calculated in the pre-
vious section, we derive the variation with �AB

� of the sum of
EPIs involved in the contribution of the alloy effect
−�k�2Zk

pVk
p 	cf. Eq. �9�
. From this variation that is also lin-

ear, we can determine the value �AB,0
�,p for which this sum

vanishes, corresponding to a nil alloy effect. The value of
�Hperm

p ��AB,0
�,p � then gives us, respectively, �i� no size effect:

the cohesion effect �Hperm,coh
p , which is found here to be

almost equal to that obtained via the classical approach, i.e.,
to HA

p −HB
p , where Hi

p is the site energy in the pure metal i,
see Eq. �4�. Recall that the equality holds for pair interac-
tions on a rigid lattice. Since this results holds for both bulk
and surface sites, �Hseg,coh�=�Hperm,coh

surf −�Hperm,coh
bulk � equals

the expression previously proposed for the contribution of
the cohesion effect to the segregation enthalpy,4,17,22,23 which
reduces to the double difference between the energies of the
surface and bulk sites for the pure metals A and B. This term
is equal to the difference of the surface energies of the metals
A and B if the bulk energy is recovered for the first underly-
ing plane under the surface, which is rather true for close-
packed surfaces of transition metals; and �ii� no cohesion
effect: the size effect �Hperm,size

p , which is plotted for p
=bulk site as a function of �r /r in Fig. 3�a�, before and after
relaxations. �Hperm,size

bulk is also compared with the value de-
duced from the continuous linear elasticity:37

�Hel =
24�KAGBrA

0rB
0�rB

0 − rA
0�2

3KArA
0 + 4GBrB

0 , �12�

where KA and GB are, respectively, the bulk modulus of the
solute �with atomic radius rA

0� and the shear modulus of the
matrix �with atomic radius rB

0�. For �r /r5%, the elastic
theory provides a very satisfactory approximation of
�Hperm,size

bulk . Beyond 10%, the dissymmetry tension-
compression due to the anharmonicity of the potential leads
to larger values for a solute atom that is larger than the ma-
trix ��r /r�0� than in the reverse case for the same value of
�r /r, which could not be obtained via the elastic computa-
tions. Moreover, one can note the crucial role of the relax-
ations in the estimation of �Hperm,size

bulk ; in particular, the larger
�r /r is, the more the relaxations diminish the value of
�Hperm,size

bulk . Figure 3�b� gathers the contributions of the size
effect to the permutation enthalpies in the surface and in the
bulk, and to the segregation enthalpy. As shown by the con-
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FIG. 3. Size effect contribution �in eV/at�: �a� �Hperm,size
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traction of the interplanar distance between the surface plane
and the first underlayer,28,40 the surface plane is in tension for
the stress components parallel to the surface. This results in a
gain in the permutation enthalpy �Hperm,size

surf 0 when the sol-
ute is bigger than the matrix and a loss in the reverse case.
We also show the values of �Hseg,size obtained via the BLT
method on Fig. 3�b�,17,22,23 which exhibit significant devia-
tions from the CTEM ones for large differences in atomic
radii ��r /r�10%� only. In this case, the BLT method
slightly underestimates �Hseg,size. We can now explain the
strong dissymmetry of the component �Hseg,size of the segre-
gation enthalpy from this analysis. Thus, for �r /r�0, the
energy gain in surface and the energy loss in the bulk lead to
a large gain for the segregation enthalpy ��Hseg,size0� 	Fig.
3�b�
. Reversely, for �r /r0, the energy loss is rather
equivalent in the surface and in the bulk, which leads to
values of �Hseg,size that are slightly positive. Two comments
on frequent ideas encountered in the literature arise from
these results. First, the dissymmetry of the segregation en-
thalpy as a function of �r /r is not essentially due to the
anharmonicity of the interatomic potential and its dissymme-
try between tension and compression. As shown before, this
effect only explains the slight asymmetry of �Hperm,size

bulk ,
while the dissymmetry of �Hseg,size comes mainly from the
sign reversal of �Hperm,size

surf with the sign of �r /r, which is
due to the tensile surface stress. Second, the McLean16 as-
sumption that has initially been proposed for intergranular
segregation and extended to surface segregation by Wynblatt
and Ku14,15 is somewhat too simple. These authors suggest
that the elastic energy corresponding to a solute atom in the
bulk 	elastic approximation of �Hperm,size

bulk , Eq. �12�
 is com-
pletely relaxed in the surface, which leads to �Hseg,size=
−�Hperm,size

bulk . Figure 3�b� shows that this approximation that
neglects the role of �Hperm,size

surf strongly underestimates
�Hseg,size for �r /r�0 and overestimates �Hseg,size for
�r /r0, with even a sign error in this last case.

C. Coupling coefficient

The linear variations observed both for the permutation
enthalpies and for the summation of the alloying EPIs
�−�k�2Zk

pVk
p� as a function of �AB

� imply that the coupling
coefficient 	p does not depend on �AB

� 	see Eqs. �8� and �9�
.
This is a major result, which indicates that the coupling co-
efficient depends only on the potentials of the pure metals A
and B. This allows us to study the variation of the coupling
coefficient between cohesion and alloying effects, 	coh,alloy

p ,
as a function of �� /� when �r /r=0 and the variation of
	size,alloy

p as a function of �r /r when �� /�=0. Figure 4�a�
shows the variation of 	coh,alloy

bulk , both in the bulk and in the
surface. For �� /��0 �respectively �� /�0� 	solute more
�respectively less� cohesive than the matrix
, 	coh,alloy

bulk is
negative �respectively positive� and quite proportional to
�� /�. It diminishes �respectively increases� the contribution
of the alloy effect �in absolute value� in �Hperm

bulk . For
�� /�=33% this correction reaches 15%. As the atomic re-
laxations affect slightly the values of �Hperm

bulk when the
atomic radii of the two elements are equal, one can conclude
that this coefficient mainly comes from the N-body feature of

the interatomic potentials. Indeed, for pair interactions on a
rigid lattice, 	coh,alloy

bulk equals zero by definition.
The same Fig. 4�a� compares the variations of 	coh/alloy

surf as
a function of �� /� with the ones obtained for 	coh/alloy

bulk . For
�� /��0 �solute more cohesive than the matrix�, we observe
a rather linear variation and 	coh/alloy

surf �	coh/alloy
bulk . For

�� /�0 �solute less cohesive than the matrix�, a nonlinear
contribution appears for large values of �� /�, leading to an
increase in 	coh/alloy

surf with regard to the bulk value 	coh/alloy
bulk .

In the absence of cohesion effect, 	size/alloy
bulk represents the

coupling between the size and alloy effects, which mainly
induces a deviation between the one-solute �for �Hperm

bulk � and
two-solute computations �via the EPIs�, keeping in mind that
the N-body feature of the interatomic potentials is still act-
ing. Figure 4�b� displays the variations of 	size/alloy

bulk as a func-
tion of �r /r. For �r /r�0 �solute bigger than the matrix�,
	size/alloy

bulk is negative and proportional to �r /r, similarly to
	site/alloy

bulk for �� /��0 �solute more cohesive than the matrix�.
For �r /r0, 	size/alloy

bulk is positive but varies more strongly
than in the previous case, mainly because of the role of the
atomic relaxations. Typically, the value reached by 	size/alloy

bulk

for �r /r=−15% doubles the contribution of the alloy effect
for that value of �r /r.
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Figure 4�b� also compares the variations of 	size/alloy
p in the

surface and in the bulk as a function of �r /r. For �r /r�0,
	size/alloy

p is almost identical in the surface and in the bulk. For
�r /r0, the value of 	size/alloy

p in the surface is around half
the value in the bulk on the range of �r /r considered here.

IV. COUPLED THREE EFFECTS MODEL: APPLICATION
TO CO-PT AND CU-AG (100)

After having studied separately the couplings between the
alloy and cohesion effects on one hand, and between the
alloy and size effects on the other hand, we apply this pro-
cedure to the �100� surface of two specific systems: Co-Pt
and Cu-Ag, for which the three effects are coupled. Co-Pt
and Cu-Ag represent systems with very different character-
istics �cf. Table I�. While the difference in the atomic radii is
similar in both systems �rPt

0 /rCo
0 �1.11 and rAg

0 /rCu
0 �1.13�,

the larger element �Pt� is also more cohesive for the Co-Pt
system; whereas the larger element is the less cohesive �Ag�
in the Cu-Ag system. Moreover, the Co-Pt system displays a
strong tendency to order while the Cu-Ag system is charac-
terized by a large miscibility gap.

For these systems that present simultaneously size, alloy,
and cohesion effects, we carry out the CTEM procedure pro-
posed in Sec. II C. The EPIs and the permutation enthalpies
are computed in the bulk and in the surface as a function of
�AB

� , while the interatomic potentials for the interactions
Co-Co and Pt-Pt on one hand and Cu-Cu and Ag-Ag on the
other hand are fixed �Table I�. Similar to before, the compari-
son of the linear variation with �AB

� of the quantities �Hperm
p

and �k2Zk
pVk

p allows us to define the coefficient 	3 effects
p .

Here again, this coefficient is valid for all the values of �AB
�

and is independent of the specific values of �AB
� determined

for the Co-Pt and Cu-Ag systems, which leads to an unam-
biguous definition of alloy, cohesive, and size effects. With
the EPIs and the coefficient 	3 effects

p , one can generalize re-
lation �8� to obtain the coupled three effects model �CTEM�;

�Hperm
p = �Hperm,alloy

p + �Hperm,coh
p + �Hperm,size

p , �13�

with

�Hperm,alloy
p = − �1 + 	3 effects

p ��
k�2

Zk
pVk

p. �14�

Moreover, relations �10� and �11� can be used to give sepa-
rately the cohesion and size contributions:

�Hperm,coh
p = HA

p − HB
p , �15�

�Hperm,size
p = �Hperm

p ��
k�2

Zk
pVk

p = 0� − �HA
p − HB

p� . �16�

This decomposition of the permutation enthalpy can natu-
rally be extended to segregation enthalpies.

A. Co-Pt (100)

In view of the values of �� /� �cohesion effect� and of
�r /r �size effect�, and of the general behavior illustrated in
Sec. III, the Co�Pt� and Pt�Co� systems can be viewed as

representative of hybrid cases where the relation between
surface and bulk EPIs results from the combination of a mul-
tiplicative factor �cohesion effect� with an additive one �size
effect�.

The values of 	3 effects
p for the bulk and the surface com-

puted from �Hperm
p as a function of �AB

� are shown in Fig. 5.
We also show the coupling coefficients as determined in the
previous sections for the two couplings: cohesion/alloy and
size/alloy. Since the bigger element �Pt� is also the more
cohesive, 	coh/alloy

p and 	size/alloy
p have the same sign, which is

negative for Co�Pt� and positive for Pt�Co�. These signs are
confirmed by the computation of 	3 effects

p despite the nonad-
ditivity of these coupling constants �Fig. 5�.

Using formulas �13�–�16�, we determine the three compo-
nents of the permutation energies in the bulk and in the sur-
face, which provide the segregation enthalpies shown in Fig.
6. The direct computation of �Hseg and its reconstitution �
via the three components successfully agree very well, as can
also be seen in Fig. 6. The deviations are smaller than 15
meV for quantities that result from competitive elementary
effects that can reach 300 meV. We also give the results
obtained by the previous decomposition DBLT. This clearly
shows that the strong disagreement observed for Co�Pt�, at
the origin of this study, comes rather completely from the
evaluation of the contribution of the alloy effect, which is
very overestimated �by more than 200 meV� by the DBLT
decomposition 	Fig. 6�a�
. The contribution of the size effect
�Hseg,size is however very comparable between both meth-
ods, as we already noticed in the previous section 	cf. Fig.
2�b�
.

The evaluation of the contribution of the alloy effect
�Hseg,alloy differs on two points between this method and
DBLT: �i� considering the variation of the EPIs in the surface
and �ii� considering the coupling between the three effects
via 	3 effects

p .
Figure 6 stresses the importance of each of these points in

the deviation observed in �Hseg,alloy. For Co�Pt�, the
strengthening of the surface EPIs �DEPIp� reduces �Hseg,alloy
�of around 100 meV� and the coupling between the three
effects leads to an additional reduction of 100 meV. For
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FIG. 5. 	3 effects
p �bulk and surface� and coupling coefficients as

determined in Sec. III C between cohesion and alloy effects,
	coh/alloy

p , and between size and alloy effects, 	size/alloy
p , for �a�

Co�Pt� and �b� Pt�Co�.
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Pt�Co�, the bulk EPIs and the value of �Hseg,alloy obtained by
the DBLT decomposition are around three times weaker than
in Co�Pt�. The influence of the strengthening of the surface
EPIs is very close �in relative value� to the one observed for
Co�Pt�. However, the positive sign of 	3 effects

p in Pt�Co�
leads to an increase in �Hseg,alloy that partly compensates the
previous effect. This analysis shows that determining the
segregation driving forces requires specific care in systems
with large values of EPIs.

B. Cu-Ag (100)

We now consider the Cu-Ag system for which the BLT
decomposition was successful. Recall that this system is
characterized by a strong tendency to phase separate, the
larger element �Ag� being the less cohesive. Now the values
of �� /� �cohesion effect� and of �r /r �size effect� make the
system representative of a system with a pure size effect.
Besides their positions in a ��� /�, �r /r� map, it is worth
noticing that the Co-Pt and Cu-Ag systems strongly differ by
the value of �AB

� that governs the mixed interaction A-B: for
Co-Pt, �AB

� ��1.09� is well above the value corresponding to
V1=0 in the bulk ��AB

� �1.04�, which is consistent with the
strong tendency to the order of this system. For Cu-Ag,
�AB

� ��0.996� is very close to the value that cancels V1 in the
bulk ��AB

� �1.005�. This confirms that the wide miscibility
gap observed in this system is mainly related to the size
difference between Cu and Ag.

The values of 	3 effects
p for the bulk and the surface and the

coupling coefficients for effects taken two by two are shown
in Fig. 7. Due to the fact that the larger element �Ag� is also
the less cohesive, 	coh/alloy

p and 	size/alloy
p have opposite signs.

Figure 7 shows that the coupling between size and alloy
effects prevails since 	3 effects

p is close to 	size/alloy
p .

The decomposition is proved to be valid by comparing the
direct computation of �Hseg and its reconstitution � via the
three elementary effects, as can be seen in Fig. 8. The devia-
tions are smaller than 10 meV and the CTEM decomposition
leads to results that are very similar to DBLT. To understand

the relative invariance of the results between both methods in
this system, we detail the effects of the variations of the EPIs
at the surface and of the coupling coefficient 	3 effects

p in
�Hseg,alloy such as for Co-Pt �Fig. 8�.

For Cu�Ag� the variation of the EPIs parallel and perpen-
dicular to the surface increases slightly �Hseg,alloy, while the
negative value of 	3 effects

p has the opposite effect. This leads
to a very similar estimation of �Hseg,alloy between DBLT and
DCTEM. For Ag�Cu�, the variation of the EPIs at the surface
diminishes �Hseg,alloy slightly, whereas the positive value of
	3 effects

p has the opposite effect, leading again to a very weak
modification of �Hseg,alloy between DBLT and DCTEM.

V. DISCUSSION

The decomposition of the segregation enthalpy into three
effects previously proposed �DBLT� was quantitatively satis-
factory for various crystallographic environments
�close-packed,17,19,20 vicinal surfaces,21 grain
boundaries,17,22,23 and clusters9� in the Cu-Ag system and in
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many others.24,25 Its inability to reproduce the segregation
enthalpy in the case of Co�Pt� led us to develop the present
approach based on a systematic study of the properties of the
permutation and segregation enthalpies as a function of the
value of the mixed interaction �AB between the components
A and B of the alloy, leading to the coupled three effects
model.

This systematic study has revealed an unexpected prop-
erty of the alloy effective pair interactions. Although it is
well known that these interactions vary between the surface
and the bulk,11–13,35,36,39 no general prediction on these varia-
tions was available. This study shows that a size mismatch
between the components can lead to factors that are mainly
additive; the intraplane surface interactions being greater
than the bulk ones, while the interplane interactions are
lower. Conversely, in the absence of a size effect, our com-
putations predict a factor that is essentially multiplicative
between surface and bulk interactions, leading to a strength-
ening �in absolute value� of these interactions in the surface
that is quite identical for the intraplane and interplane inter-
actions. Besides, this study shows that only the interactions
between nearest and next-nearest neighbors depend strongly
on the mixed interaction parameter �AB, while further inter-
actions are governed by the size difference between the com-
ponents and to a certain extent by the N-body character of
the interatomic potentials. We plan to compare the values of
the interactions beyond the next-nearest neighbors between
direct computation and calculations based on the anisotropic
elasticity.

Evaluating the contribution of the alloy effect to the per-
mutation and segregation enthalpies in the infinitely dilute
limits comes up against the following difficulty: While the
computation of �Hperm

p only involves one solute atom, com-
puting �Hperm,alloy

p via the EPIs relies on two-solute calcula-
tions. In particular, the interaction between the displacement
fields of these two impurities plays a role in the EPI and not
in �Hperm

p , which is very important in the presence of a size
effect. We have shown that it is possible to solve this diffi-
culty by introducing coupling coefficients between cohesion,
size, and alloy effects that only depend on the properties of

the pure metals and not on the mixed interaction A-B. We
have then isolated the main characteristics of these coeffi-
cients as a function of the sign of the difference in cohesion
energies and the atomic radii. The direct computation of
these coefficients belongs to the prospects of this work.

The sum of the contributions of the cohesion and size
effects is estimated via the permutation enthalpy for the
value of �AB that cancels the contribution of the alloy effect.
After checking that the contribution of the cohesion effect
�Hperm,coh

p equals the difference of site energies between the
pure metals A and B, we have deduced the contributions due
to the size effect �Hperm,size

p and �Hseg,size. We have shown
that the dissymmetry of �Hseg,size as a function of the sign of
�r /r, i.e., �Hseg,size that is more important when �r /r�0
�solute bigger than the matrix� than in the opposite case,
comes mainly from the tensile character of the surface and
not from the tension/compression dissymmetry of the inter-
atomic potential due to its anharmonicity.

Accounting for the variation of the EPIs at the surface and
the coupling coefficient between the three elementary effects
�cohesion, size and alloy� leads us to propose an improved
decomposition DCTEM of the permutation and segregation en-
thalpies. This reproduces the segregation enthalpy within 20
meV, in particular in the case of the Co�Pt� system where the
previous decomposition leads to a difference of about 200
meV. The improvement is essentially performed on the con-
tribution of the alloy effect �Hseg,alloy. A detailed analysis
explains why this is crucial for Co�Pt� and quite negligible
for the Cu-Ag system. This comes from the fact that the
effect of the variation of the EPIs at the surface and of the
coupling go into the same direction for Co�Pt�, contrary to
Cu-Ag. The previous analysis of the variation of the EPIs at
the surface and of the sign of 	3 effects

p indicates that the
required conditions for the two effects to behave in parallel
are 	3 effects

p 0 and Vsurf� Vbulk, which diminishes
�Hseg,alloy. 	3 effects

p 0 corresponds to a solute that is more
cohesive 	Fig. 3�a�
 or bigger 	Fig. 3�b�
 than the matrix,
while the hierarchy Vsurf� Vbulk corresponds to the most
encountered situation �Figs. 1 and 2�. Co�Pt� is representa-
tive of this case; 	3effects

p �0 and Vsurf Vbulk, which in-
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Σ

FIG. 8. Comparison between direct calcula-
tion, �Hseg, and reconstitution, �, of the segrega-
tion energy for �a� Cu�Ag� and �b� Ag�Cu� using
either the DBLT or the DCTEM decompositions.
The role of the variation of the EPIs in the sur-
face is illustrated by the DEPIp

decomposition,
which gives the value of the segregation energy
when only the variation of the EPIs in the surface
is taken into account but not the coupling coeffi-
cients. Energies are expressed in millielectron
volt.
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creases �Hseg,alloy. 	3effects
p �0 corresponds to a solute that is

less cohesive 	Fig. 3�a�
 or smaller 	Fig. 3�b�
 than the matrix
in the absence of cohesion effect—while the inequality
Vsurf Vbulk can be encountered when the size effect pre-
vails for restricted ranges of values of �AB �Fig. 2�. This last
condition strongly reduces the number of systems corre-
sponding to this case.

This analysis shows that the improvements brought to the
modeling of the alloy effect by this present study shall be
mainly sensitive to systems for which the values of the EPIs
are large �phase diagrams with ordered compounds or coher-
ent miscibility gap with a high critical temperature� and the
solute is bigger �or more cohesive� than the matrix. For the

Ni�Zr�, Pt�Ti�, and Pt�Zr� systems that have already been
experimentally studied in the framework of superficial
segregation,41–43 this current approach is expected to be use-
ful to establish a consistent decomposition of �Hseg. Besides,
current works aim at extending this approach to grain bound-
aries and clusters.
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